
PSP Modules, Exports, Imports and Patches
A short tutorial describing modules used in Sony’s PSP

 Executive summary

This tutorial describes the use of modules in the PSP. The purpose of this tutorial is two-fold: first, to describe the basic
steps to create PSP modules, including pure export modules and applications. Second, to present in detail what
happens behind the scenes, how the PSP kernel manages the modules and their import and export functions. Finally,
we illustrate how to patch in memory modules dynamically to adapt the behavior of the system to our needs.

The reader is expected to have a basic knowledge of C, the PSPSDK (how to compile and run a Hello World
application) and optionally, basic notions of MIPS assembly.

Anissian, February 2007

Anissian.psp@gmail.com

V1.0a2

1 Introduction..2
2 Goals and Non-Goals ...2
3 Credits ...3
4 System Model ...3
5 PRX and ELF modules...3

5.1 What is an ELF .. 3
5.2 What is a PRX.. 3
5.3 What is an EBOOT .. 3
5.4 Limitations.. 3

6 Initialization..3
6.1 Module entry points: crt0, start files and module_start .. 3
6.1.1 Module Information .. 4
6.1.2 Main thread or no main thread?... 4
6.1.3 Heap size ... 5
6.1.4 Where is my main? .. 5
6.2 Pure export module example... 5
6.2.1 Pure export example Makefile ... 6

7 MIPS architecture and MIPS assembler..6
7.1 Processor registers.. 7
7.2 Basic MIPS instructions ... 8
7.3 Branch targets perform PC relative addressing (close jumps) .. 9
7.4 One slot delay jumps ... 9
7.5 Loading a 32 bit constant: MIPS has only 16 bits of immediate value,.. 9
7.6 Differences between J and JAL (between jump and call) .. 9

8 The Client / Server / Supervisor example ..10
8.1 The Supervisor Module.. 10
8.1.1 Module Info and Main Thread.. 11
8.1.2 The exports file .. 11
8.1.3 Functions and NIDs. .. 12
8.1.4 Assembler dump of the server.prx module .. 12
8.1.5 The method sv_check_permissions in detail ... 14
8.2 The Server Module .. 15
8.2.1 The server module source file ... 15
8.2.2 The server module import file .. 16
8.2.3 The server module Makefile .. 16
8.3 The Client Application.. 16
8.3.1 File Structure.. 16
8.3.2 Boilerplate code ... 17

 2

8.3.3 Preprocessor directives and macros ... 17
8.3.4 Typedefs .. 17
8.3.5 Capturing the “Press Home to quit” ... 18
8.3.6 Loading the modules ... 19
8.3.7 Managing modules .. 20
8.3.8 Kernel internal management of loaded modules ... 21

9 “Patching” modules...24
10 Patching the Server Module Export Table ..25
11 Patching the Server “server_process_req” exported method. ...27
12 Patching the Server Module Import (stub) Table..27
13 Conclusions..30

1 Introduction
So here you are, a starting PSP developer. Most probably, you have already installed the PSPSDK, played around with cygwin -- or
installed it in a native POSIX environment -- and you have tried to compile and run the basic SDK samples. You are more or less
proficient coding in C, you know how Makefiles work and you have a basic knowledge of assembler (MIPS assembler, but we will
touch this briefly, only very basic knowledge such what is a register or a CPU instruction) for the more advanced topics covered.
After reading around and googling a bit, you know the difference between a PRX and an ELF, you know what kernel mode means and
what user mode means. You have created your first "Hello world" application, and you can create your own EBOOT.PBP. Now you
start to ask "so... what's next?", and two paths lie in front of you: you may join the kernel side of the force, and look at how the inner
details of the PSP kernel, or join the user side of the force, considering the PSP and the PSPSDK as a platform with a given set of
APIs on top of which develop your own homebrew. In either case, what we explain here we hope it will be useful.

2 Goals and Non-Goals
This tutorial aims at covering the "what next" aspect of PSP programming, narrowing the gap between "I can run a hello world" and "I
can create my own firmware or code a downgrader" (the gap remains pretty wide, mind you). Not being a tutorial for starting from
scratch, I will not cover the following points, which are already covered in a few, existing tutorials:

• How to set up a PSP development environment with the SDK. Although not strictly necessary, you are supposed to be able
to compile your own samples and the code snippets in this tutorial.

• The skeleton of a "Hello world" main.c file, and the related Makefile.

• How to configure your PSP to run homebrew, either using HENs; SE or OE custom firmwares or similar approaches.
• How to use PSPLINK for launching, transferring or debugging applications.
• Piracy, mod chips or illegal activities.

In this tutorial, we will consider the following topics:

• Very basic MIPS assembly. It is not required, but a basic knowledge of MIPS asm instructions and CPU registers will help
you understand a few inner details within this tutorial.

• How to create modules (as PRXs), defining export libraries and export functions (pure export modules). For technical and
design reasons (the current PSPSDK does not allow it) only functions will be exported by a given module, not variables.
Note that this is not a showstopper, if you want to export a variable, you can always wrap it using accessor and mutator
methods (such as int get_i() and void set_i() for a variable named “i”).

• How to create other modules that import exported functions. What is the role of the stubs, how to create import tables, what
a NID is and how it is computed.

• How to create modules that execute exported functions dynamically.
• How the PSP kernel manages loaded modules. The abstract data types (ADT) involved and how the information of modules

is kept in memory.
• How to modify existing modules dynamically ("patching"), and real case scenarios where this has been useful.

For the purposes of this tutorial, a 1.5 firmware is required. Personally, I am using the latest subversion version of PSPSDK on a Linux
system and using Firmware 3.03OE-C. For this tutorial we will work on kernel mode both for simplicity and technical reasons. For
technical reasons, since we will be looking at the inner details of the module system, and some functions such as
sceKernelFindModuleByName are kernel-mode only. For simplicity reasons, since in order to overcome these limitations,
some kind of voodoo magic is required such as using wrapper functions and mechanisms that allow unconstrained user to kernel
calls, named “bridges” such as kubridge, or kvshbridge which are out of the scope of the tutorial. The resulting EBOOT.PBP
is supposed to go into the PSP/GAME150 folder and contain a static ELF as the main application. A single directory in the
PSP/GAME150 will store the EBOOT.PBP and the required PRXes.

 3

3 Credits
I do not pretend that the ideas presented here are mine or original, some techniques are as old as computer science, and not specific
to the PSP. PSP related information has been collected from several sources and sites, in particular:

• PSPDEV site http://www.pspdev.org and lots of forum threads within
• MPH site, notably for the PatchNID functions
• Tyranid excellent PSPLink, the PSPSDK and the PRXTOOL program.
• PspPet ideas and code such as PSARDumper.
• Moonlight / Dark_Alex Custom Firmware Proof of concept.
• The “google guy”
• Many, many more...

4 System Model
For the whole tutorial, we will consider the following system model: an entity, named "client" requests services from a "server" entity,
which in turn consults a third entity named "supervisor" which grants privileges to clients based on an identifier. The supervisor is a
closed system, and may abstract low level operations.

client server

supervisor

Client ID

Request Service (client ID)

Perform service / ignore

Check Permissions
for client

Grant permission / Deny

Policy

ClientDoRequest server_process_req (int client_id)

sv_check_permissions (int client_id)

Every system entity is implemented as a module. The Server and Supervisor modules will be export modules.

5 PRX and ELF modules

5.1 What is an ELF
An ELF (Executable and Linking Format) is a format for object files. An ELF is to executables, relocatable and shared objects
(modules in general) what a GIF or JPG is to images. The ELF standard basically specifies the binary format of a file. In simple terms,
it defines an ELF header followed by a number of sections. Each section has a purpose, such as including the module program
instructions, defining what functions the module exports, what functions the module imports; including the initialized

5.2 What is a PRX
A PRX (Relocatable eXecutable) is similar to ELF. (to be completed)

5.3 What is an EBOOT
An EBOOT.PBP file is the equivalent of an “exe” file in Windows. It packs the main executable file and other files that are metadata,
such as .png files to be shown at the XMB, a short video for the same purpose and a .SFO file. The format of a PBP file is simple: it
contains a fixed-size PBP header, containing: a 4-byte magic number (‘\0’, ‘P’, ‘B’, ‘P’), a u32 version number, and 8 offsets within the
PBP file to the packed files: "PARAM.SFO", "ICON0.PNG", "ICON1.PMF", "UNKNOWN.PNG", "PIC1.PNG", "SND0.AT3",
"UNKNOWN.PSP" and "UNKNOWN.PSAR".

5.4 Limitations
Using an OE firmware, the 1.50 kernel can start a static elf within an EBOOT without requiring it to be kxploited, either in kernel
or user mode. For 3.03, the module needs to be in user mode and in PRX format. Starting from 3.10 OE, the module can be both in
static ELF and PRX, as long as it is in user mode. Since the OE firmware is patched so you can load and start modules in kernel
mode from a user mode stored in the MS, if you need a kernel mode application, create a user mode wrapper that loads and starts the
main application in Kernel memory partition.

6 Initialization

6.1 Module entry points: crt0, start files and module_start
When the PSP kernel loads and starts a module such an application, it reads the EBOOT.PBP file, extracts the ELF or PRX module
(which, for the purposes of this tutorial are fundamentally the same thing, barred a few details such as fixed or relocatable memory

 4

addresses), parses the module sections, performs some linking to “connect” module imports with already loaded module exports and
system syscalls, creates a copy in memory and proceeds to execute the module entry point.

Additionally, the module developer needs to decide whether to have the module entry point executed in a new, separated thread, or to
have it executed by the thread that requested the loading and starting of the module. The former means that a new thread, named
“main thread” is created (the main name is unrelated to the classical C function also named main), and the latter means that you need
to be careful regarding what operations and tasks you perform in the entry point: if your module is supposed to be used as a function
library, or simply launch another worker thread, your entry point will be simple, and you may not need a separate thread, but if you
need more complex things, you need a main thread (you cannot sleep in your module entry point if you don’t have a main thread).
There are macros that define some attributes of your main thread, whether you want it to run in kernel mode, vsh mode, or user
mode, whether it will use the VFPU or not, and so on.

For this, the kernel needs basically two things a) to be able to read and parse module information, and b) know where
two find the module entry point. In particular, the kernel expects to find sections in the ELF/PRX giving the module
information and a module exported symbol (function), named module_start.

Repeating again and again the same tasks and typing the required boilerplate code is an unpleasant task. This is why the SDK
abstracts a few details and provides you convenient macros instead.

6.1.1 Module Information

Providing the required module information is made easy using the PSP_MODULE_INFO macro:

PSP_MODULE_INFO("Module name", 0x1000, 1, 0);

This macro is used to state the module name, the module “mode” (kernel, user or vsh) and a major and minor version (v1.0). Behind
the scenes, the macro declares a SceModuleInfo that will contain the module attributes, the module name, and pointers to tables
containing the module exported (presented for others to use) and imported (used from other modules) symbols, and defines the
required ELF/PRX sections where the kernel expects to find this information.

/* Module info structure. Used to declare a module (library or executable). This
structure is required in all PSP executables. */
typedef struct _scemoduleinfo {
 unsigned short modattribute;
 unsigned char modversion[2];
 char modname[27];
 char terminal;
 void * gp_value;
 void * ent_top;
 void * ent_end;
 void * stub_top;
 void * stub_end;
} _sceModuleInfo;

typedef const _sceModuleInfo SceModuleInfo;

For the exact details of the macro, check pspsdk/src/user/pspmoduleinfo.h
The module mode is where you state whether you want user mode or kernel mode (or others out of the scope such as vsh).
Historically, numerical values have been used in most applications. For clarity reasons, you may want to use the more verbose:

enum PspModuleInfoAttr
{
 PSP_MODULE_USER = 0,
 PSP_MODULE_KERNEL = 0x1000,
};

6.1.2 Main thread or no main thread?
As discussed earlier, you need to decide whether you want a new thread or not (in case of doubt, yes, you want). If you don’t want /
need one, you can use the macro

PSP_NO_CREATE_MAIN_THREAD()

That will do. On the contrary, if you want the main thread, you may tweak a few parameters using the following macros:

 5

PSP_MAIN_THREAD_PRIORITY(priority)

PSP_MAIN_THREAD_STACK_SIZE_KB(size_kb) \

PSP_MAIN_THREAD_ATTR(attr)

PSP_MAIN_THREAD_NAME(s)

Or use a single one.

#define PSP_MAIN_THREAD_PARAMS(priority, size_kb, attribute) \
 PSP_MAIN_THREAD_PRIORITY(priority); \
 PSP_MAIN_THREAD_STACK_SIZE_KB(size_kb); \
 PSP_MAIN_THREAD_ATTR(attribute)

6.1.3 Heap size
Finally, you can define the amount of memory you want to allocate for the heap (the memory pool from where memory is allocated
and deallocated by means of malloc / free and similar functions). This is out of the scope of the present tutorial, just to name the
following macro:

PSP_HEAP_SIZE_KB(size_kb)

In some cases, you may want to specify 0 for the heap.

6.1.4 Where is my main?
If you have programmed in C, and browsed the PSPSDK files, you are used to see an application entry point as (a variant of):

int main (char* argc, char* argv[])

However, we just mentioned that the kernel expects a symbol named module_start. What is the relationship between the

module_start and the main functions? The PSPSDK allows you to abstract from these details for most homebrew applications
and expect your application to start at the well-known main function (and usually in its own separate thread, but this is not a
requirement). This means that you don’t need to define a module_start since it is done for you. The SDK
(src/startup/crt0.c and crt0_prx.c) define the entry point and call your own main.
Common practice seems to be that if you don't need a main thread, the module_start seems enough and no need to define a
main function, unless you do complex things. If you want a separate thread, let the sdk (crt0 and startup files) define the thread proc
for you, parse the arguments and call your int main (int argc, char*argv[]) plus a few more things regarding the C
library that we will not look into now.

6.2 Pure export module example
For illustrative purposes, let us look at the skeleton of a “pure export” module. A pure export module is a module that acts as a
“library” to other modules. The name “pure export” may be a bit misleading, since the name does not imply that the module does not
import other symbols. It mostly refers to the fact that it does not “do anything on its own”, just a library (similar to .so or .dll files). A
pure export module usually declares an empty module_start and module_stop, it does not need a separate thread for this
and does not need to define main. We will later see how to export symbols.

#include <pspkernel.h>

PSP_MODULE_INFO("Export Module", 0x1000, 1, 0);
PSP_NO_CREATE_MAIN_THREAD();

int
function_1 ()
{
 return 0;
}

int

module_start (SceSize argc, void* argp)

{
 return 0;
}

 6

int
module_stop (SceSize args, void *argp)
{
 return 0;
}

C code 6-1 basic skeleton of an export module.

6.2.1 Pure export example Makefile
If your module does not need the SDK initialization, add the following line to your Makefile.

LDFLAGS += -mno-crt0 -nostartfiles

6.3 Another example: extending Custom Firmwares
Another common application of homebrew PRXs is to extend custom firmwares. Some of these firmwares, notably Dark_Alex Open
Edition, load and start custom modules when the PSP is started up. Since they extend the capabilities of the firmware, they are
commonly referred to as “plugins”. Plugins allow tasks such as taking screenshots, activating USB using few keypresses and more
things. The following code shows the skeleton of a kernel mode plugin for Dark Alex custom firmwares, to be used in vsh mode,
Basically, it consists of a background thread that creates a file when the L button is pressed. Not very useful, but illustrates the notion
of plugins.
Please refer to the README notes of Custom Firmwares regarding how to use and enable them.

#include<pspsdk.h>
#include<pspkernel.h>
#include<pspctrl.h>

PSP_MODULE_INFO("psplugin", 0x1000, 1, 0);
PSP_MAIN_THREAD_ATTR(0);

int module_start (SceSize argc, void* argp) __attribute__((alias("plugin_entry")));

/**
 * dump_hello -- creates file plugin_pspain.dat on root dir of MS
 *
 *
 * Returns -1 on error, 0 otherwise
 */
int plugin_dump_file ()
{
 SceUID fd = sceIoOpen ("ms0:/plugin_pspain.dat",
 PSP_O_WRONLY | SP_O_CREAT | PSP_O_TRUNC, 0777);
 if (fd < 0)
 return -1;
 int a = 1;
 int rc;
 rc = sceIoWrite (fd, &a, sizeof(int));
 if (rc < sizeof(int))
 rc = -1;
 else
 rc = 0,
 sceIoClose (fd);
 return rc;
}

/**

 * plugin_thread -- worker thread for plugin

 *
 *
 */
int plugin_thread (SceSize argc, void* argp)
{
 SceCtrlData pad;
 sceCtrlSetSamplingCycle(0);
 sceCtrlSetSamplingMode(PSP_CTRL_MODE_DIGITAL);
 while (1) {

 7

 sceCtrlPeekBufferPositive (&pad, 1);

 if (pad.Buttons != 0){
 if (pad.Buttons & PSP_CTRL_LTRIGGER){
 int res = plugin_dump_file ();
 }

 if (pad.Buttons & PSP_CTRL_RTRIGGER){
 break;
 }
 }
 sceKernelDelayThread(100000);
 }
 sceKernelExitDeleteThread(0);
 return 0;
}
/**
 * plugin_entry -- alias for module_start. Creates plugin worker thread and exits
 *
 */
int plugin_entry (SceSize argc, void* argp)
{
 u32 func = 0x80000000 | (u32)plugin_thread;
 SceUID thread = sceKernelCreateThread("plugin_thread",
 (void*)func, 0x30, 0x10000, 0, NULL);
 if (thread >= 0) {
 sceKernelStartThread (thread, argc, argp);
 }
 return 0;
}

7 MIPS architecture and MIPS assembler

7.1 Processor registers

The PSP has a MIPS CPU (Allegrex, a RISC architecture) with 32 registers of 32 bits, numbered from 0 to 31. Each register has a
purpose, and the table shows the mapping between register numbers, its mnemonic and a description of its use.

Name Register Function
 $a0 4 used to pass the first of four arguments
 $a1 5 used to pass the second of four arguments
 $a2 6 used to pass the third of four arguments
 $a3 7 used to pass the fourth of four arguments
 $at 1 reserved for the operating system
 $fp 30 frame pointer.
 $gp 28 global memory pointer
 $k0 26 reserved for the operating system
 $k1 27 reserved for the operating system
 $ra 31 return address
 $s0 16 callee-saved registers
 $s1 17 callee-saved registers
 $s2 18 callee-saved registers
 $s3 19 callee-saved registers
 $s4 20 callee-saved registers
 $s5 21 callee-saved registers
 $s6 22 callee-saved registers
 $s7 23 callee-saved registers
 $sp 29 stack pointer to the first free location
 $t0 8 used to hold temporary variables
 $t1 9 used to hold temporary variables
 $t2 10 used to hold temporary variables
 $t3 11 used to hold temporary variables
 $t4 12 used to hold temporary variables
 $t5 13 used to hold temporary variables

 8

 $t6 14 used to hold temporary variables
 $t7 15 used to hold temporary variables
 $t8 24 used to hold temporary variables
 $t9 25 used to hold temporary variables
 $v0 2 used to pass values to and from functions
 $v1 3 used to pass values to and from functions

7.2 Basic MIPS instructions
The instruction set has 3 instruction types, a R-type instruction involves registers, an I-type immediate values and a J-type is a pseudo
direct address jump. The format of the instructions is:

R-type

I-type

J-type

opcode

opcode

opcode

26 bit encoded address for pseudo-direct jump

rs

rs

rt

rt 16 bit immediate value

rd shamt funct

The following table shows the most common instruction mnemonics. It MIPS assembly, the result of the operation is stored in the first
argument. Please note that the mapping between the arguments in the mnemonics and their position in the instruction format does not
necessarily match.

CALL

ARGUMENT1

ARGUMENT 2

ARGUMENT3

DESCRIPTION

add rd rs rt rd = rs + rt (with overflow)
addu rd rs rt rd = rs + rt (without overflow)
addi rt rs Imm rt = rs + imm (with overflow)
beq rs rt label branch to label if (rs==rt)
j label jump to label
jal label jump to label and save next instruction address in $ra
jr rs number jump to instruction at (rs)
lui rt address upper halfword of rt = 16-bit number
lw rd offset(base) load the word at address into rd
lw rd load word at addr offset+base into rd
nop No operation
or rd rs rt rd = rs OR rt
ori rt rs Imm rt = rs OR imm
sw rt address store the word in rt to address
sw rt offset(base) store word in rt to addr offset+base
Syscall do a system call depending on contents of $v0
xor rd rs rt rd = rs XOR rt

 9

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

7.3 Branch targets perform PC relative addressing (close jumps)

7.4 One slot delay jumps
The RISC MIPS processor (and R4000 in particular) has an interesting feature: all jump instructions have a "one slot delay
instruction", which means that the instruction just AFTER (in memory) the jump instruction is executed FIRST (in time), and then the
jump. From the point of view of the upper layers though, the call is atomic and if the one slot delay instruction raises an exception, it is
as if the jump had caused it. For example, when looking at MIPS assembler, it is common to see instructions such as "li $a0, 10000",
which in MIPS assembly is a mnemonic for "Load Immediate value 10000 to register argument0”, (remember that up to 4 arguments
can be passed by using registers, not necessarily on the stack) at a memory address just after a Jump call. The following corresponds
to sleep (10000):

jal sleep_func
li $a0, 10000

7.5 Loading a 32 bit constant: MIPS has only 16 bits of immediate value,
Another particular design feature is that immediate instructions only have 16 bits of immediate value. It is not an issue if the immediate
value is small, but when we want to load a 32 bit word into a register, we need to do it in a two step process: first load the most
significant 16 bits using “lui” (load upper immediate) and or the result with the lowest 16:

 lui $a0, 0xdead
 ori $a0, $a0, 0xbeef

7.6 Differences between J and JAL (between jump and call)
In MIPS the j-type instructions are j (opcode 000010) and jal (opcode 000011). The instructions require a 26-bit field to specify the
target of the jump. In both cases, the coded address is formed from the bits at positions 27 to 2, and bits 1 and 0 are zero since the
instructions are 32-bit aligned (e.g. you can't do JAL 0x03). The full 32-bit jump target address is formed by concatenating the high
order 4 bits of the program counter (PC, the address of the instruction following the jump) 26 bits of the target and two 0 bits. For
simplicity, just consider that the coded address in the j-type instruction is 26 bits getting the wanted memory address divided by 4.

Both J-type instructions perform a direct call: J means "jump to" and JAL means “Jump and Link”, to be read as "jump to and set the
register $ra to the return address where we are supposed to come back"., so the when the PSP executes a jump it does not forget
where it was. In other words, the JAL instruction corresponds to a "call" setting the $ra register to the address of the instruction right
after the JAL (+4). The called method must then store the $ra register in the stack before calling another method and restoring it to the
good value when done so the return address is not clobbered.

The address field of a conditional branch contains a 16 bit two's complement
[(adress of target) - (address of branch) - 4] / 4

In order to better understand the differences, consider this pseudo-code snippet:

 10

void bar ()
{
 ...
}

void foo ()
{
 bar ();
}

int main ()
{
 foo ();
}

A simplified equivalent assembly code would look like this:

main:
 0x10000004 jal foo
 0x10000008 nop
 0x1000000C ...
 0x10000010 ...

At this moment, the register $ra points at the address 0x1000000C (we do not consider the one-slot delay instruction here)

foo:
 0x20000000 addiu $sp, $sp, -4 ;reserve 4 bytes in the stack
 0x20000004 sw $ra, 0($sp) ;store the ra in the stack
 0x20000008 jal bar ;call bar with $ra = 0x2000000C
 0x2000000C nop
 0x20000010 lw $ra, 0($sp)
 0x20000014 jr $ra ;restore sp, jump to return address
 0x20000018 addiu $sp, $sp, 4

When the instruction jal bar is executed, the register $ra points at 0x20000010

bar:
 0x30000000 addiu $sp, $sp, -4 ;reserve 4 bytes in the stack
 0x30000004 sw $ra, 0($sp) ;store the ra in the stack
 ...
 lw $ra, 0($sp)
 jr $ra ;restore the sp and jump to return address
 addiu $sp, $sp, 4

When the bar function ends, the control is transferred to address 0x200000010, then foo finishes and returns to main
(0x1000000C).

So, if we replaced the "jal bar" by "j bar" what would happen? Since the $ra is not set, it still points to 0x1000000C. The bar function
would indeed save the value in stack and set it back when done.... to 0x1000000C. Indeed, the jr $ra at the end off bar would return
control....to main! (Leaving foo unfinished, plus side effects such as stack leaks and sp shifts).... bad things would happen.

8 The Client / Server / Supervisor example
Now that we have the basics covered, let’s proceed with our example.

8.1 The Supervisor Module
The first module is the Supervisor Module. It is a kernel mode pure export module, which exports a single function. A single
supervisor_main.c file is enough:

#include <pspkernel.h>

PSP_MODULE_INFO("PatchMod_Supervisor", 0x1000, 1, 0);
PSP_NO_CREATE_MAIN_THREAD();

 11

const char*
sv_check_permissions (int client)
{
 const char* p;

 sceKernelDelayThread (10000);
 if (client == 123)
 p = "yes";
 else
 p = "no";

 return p;
}

int
module_start (SceSize argc, void* argp)
{
 return 0;
}

int
module_stop (SceSize args, void *argp)
{
 return 0;
}

C code 8-1 source code for the supervisor module

8.1.1 Module Info and Main Thread

As you know, it is a kernel mode module, named PatchMod_Supervisor. The module name is used in several parts, and is
stored in memory once the module is loaded. The use of the macro PSP_NO_CREATE_MAIN_THREAD states that the main thread
should not be created thus module_start is run from the caller thread.

8.1.2 The exports file
In order to export a set of libraries and functions, you need to define an exports file. The following text needs to be included in the
supervisor_exp.exp file. The meaning of the macros will be given shortly.

PSP_BEGIN_EXPORTS

PSP_EXPORT_START(syslib, 0, 0x8000)
PSP_EXPORT_FUNC(module_start)
PSP_EXPORT_VAR(module_info)
PSP_EXPORT_END

PSP_EXPORT_START(supervisor, 0, 0x0001)
PSP_EXPORT_FUNC(sv_check_permissions)
PSP_EXPORT_END

PSP_END_EXPORTS

C code 8-2 exports file for the supervisor module.

What does this mean? This means that this module is exporting 2 libraries, a (compulsory) library named "syslib" that exports
module_start and module_info and another library named "supervisor" that exports the function
"sv_check_permissions". The macros used are straightforward: PSP_BEGIN_EXPORTS / PSP_END_EXPORTS to
delimit the exports, PSP_EXPORT_START to start the exports for a given library (library name, library version, flags),
PSP_EXPORT_FUNC to export a function and finally PSP_EXPORT_VAR to export a variable (although Tyranid says “don’t do it”
:o).

 12

Special mention to the "flags" part: 0x8000 is reserved for the syslib library; 0x0001 means that if used, the library uses "direct jump"
e.g. a user module importing functions from another user module, or a kernel module importing functions from a kernel module, and
this is what will be used. Finally, if the flags are 0x4001, the syscall mechanism is used (for example, when exporting kernel functions
to be used by user modules). A syscall is somewhat of a "safe way" by which a user mode module can access the inner parts of the
system. In more complex systems, the syscall wrapper performs extra checks regarding the memory address spaces, the nature of
the memory, the call, and may validate or map call arguments, used in general, when a kernel module wants to provide some
functionality to user mode modules. In our case, since we are working in kernel mode, we will be using direct jumps (J opcodes in
assembly).

The corresponding Makefile is as follows. As you know, we ask the toolchain to build a PRX (supervisor.prx), and specified
in supervisor_exp.exp the list of exports. This module will export a single library "supervisor" and a single function. The psp-
build-exports is required to build the module exports (using psp-build-exports -k supervisor_exp.exp will generate a
temporary supervisor_exp.c which will be compiled, linked and removed, this is automated by the SDK build system) and to

generate the module stubs or import table (using psp-build-exports -s -k -v supervisor_exp.exp which will
generate supervisor.S for easy inclusion in other modules that may use the exported functions). You may also use prxtool
(installed separatedly, not in the SDK) using prxtool -u -k supervisor.prx, but you will not get the literal name. Being a pure export
module, it declares no "main" and we do not link the crt0 and other start files.

release: all
 psp-build-exports -k supervisor_exp.exp
 psp-build-exports -s -k -v supervisor_exp.exp

PSPSDK = $(shell psp-config --pspsdk-path)
PSPLIBSDIR = $(PSPSDK)/..
USE_KERNEL_LIBS=1
TARGET = supervisor
OBJS = supervisor_main.o

CFLAGS = -O2 -G0 -Wall
ASFLAGS = $(CFLAGS)
LDFLAGS += -mno-crt0 -nostartfiles

BUILD_PRX=1
PRX_EXPORTS=supervisor_exp.exp

include $(PSPSDK)/lib/build.mak

C code 8-3 Makefile for the supervisor module

Put these 3 files (Makefile, supervisor_exp.exp and supervisor_main.c) in a folder and compile the module. If
everything goes well, you will have a supervisor.prx and a supervisor.S. The supervisor.S is commonly known as
the "stub" file and in compiled form it will allow other modules to use the exported function easily, if they link the resulting .o files. This
file can be generated from the exp file using "psp-build-exports -s -k -v supervisor_exp.exp" or the PRX
directly (although using the latter the literal name of the function is lost).

8.1.3 Functions and NIDs

If you look at the stub file, you will see references to symbols of the form library_XXXXXXXX. Where does this naming scheme come
from? Well, in the PSP, functions in a module are named by concatenating the library they are exported (supervisor) and a 4-byte
identifier called the NID. The NID is obtained literally by computing the SHA-1 of the function name.

XXX add Sha-1 examples and PSP code.

Normally NIDs must be unique at least within a module / library context (if you ever happen to have 2 functions in the same module,
same library and which happen to have the same NID, congratulations, you are a extremely lucky developer. That said, change the
name of one of them to avoid subsequent headaches, believe me).

When reverse engineering modules, mapping NIDs to literal function names and obtaining meaningful prototypes is very useful (cfr.
Nidattack by djhuevo et al.)

 13

8.1.4 Assembler dump of the server.prx module

Since it is a small module, let us inspect the object file code (in assembler form). For this we can use

prxtool -w supervisor.prx

Let us examine the output assembler for our supervisor module and related sections. As mentioned before, information about the
module is stored in the .rodata.sceModuleInfo section1

; ==== Section .rodata.sceModuleInfo - Address 0x000000A0 Size 0x00000040 Flags 0x0002
 - 00 01 02 03 | 04 05 06 07 | 08 09 0A 0B | 0C 0D 0E 0F - 0123456789ABCDEF

0x000000A0 - 00 10 00 01 | 50 61 74 63 | 68 4D 6F 64 | 5F 53 75 70 -PatchMod_Sup
0x000000B0 - 65 72 76 69 | 73 6F 72 00 | 00 00 00 00 | 00 00 00 00 - ervisor.........
0x000000C0 - 20 82 00 00 | 60 00 00 00 | 80 00 00 00 | 88 00 00 00 - ...`...........
0x000000D0 - 9C 00 00 00 | 00 00 00 00 | 00 00 00 00 | 00 00 00 00 -

In an ELF or PRX module, the body of the program is kept in the .text section, as follows. In particular, the method "const
char* sv_check_permissions (int client)"

; ==== Section .text - Address 0x00000000 Size 0x00000054 Flags 0x0006

; ==
; Subroutine supervisor_B2C390CB - Address 0x00000000
; Exported in supervisor
supervisor_B2C390CB: ; Refs: 0x000000E4
 0x00000000: 0x27BDFFF8 '...'' - addiu $sp, $sp, -8
 0x00000004: 0xAFB00000 '....' - sw $s0, 0($sp)
 0x00000008: 0x00808021 '!...' - move $s0, $a0
 0x0000000C: 0xAFBF0004 '....' - sw $ra, 4($sp)
 0x00000010: 0x0C000015 '....' - jal ThreadManForKernel_CEADEB47
 0x00000014: 0x24042710 '.'.$' - li $a0, 10000
 0x00000018: 0x3C030000 '...<' - lui $v1, 0x0
 0x0000001C: 0x2402007B '{..$' - li $v0, 123
 0x00000020: 0x12020003 '....' - beq $s0, $v0, loc_00000030
; Data ref 0x00000114 ... 0x00736579 0x00006F6E 0x65707573 0x73697672
 0x00000024: 0x24630114 '..c$' - addiu $v1, $v1, 276
 0x00000028: 0x3C020000 '...<' - lui $v0, 0x0
; Data ref 0x00000118 ... 0x00006F6E 0x65707573 0x73697672 0x0000726F
 0x0000002C: 0x24430118 '..C$' - addiu $v1, $v0, 280

loc_00000030: ; Refs: 0x00000020
 0x00000030: 0x8FBF0004 '....' - lw $ra, 4($sp)
 0x00000034: 0x8FB00000 '....' - lw $s0, 0($sp)
 0x00000038: 0x00601021 '!.`.' - move $v0, $v1
 0x0000003C: 0x03E00008 '....' - jr $ra
 0x00000040: 0x27BD0008 '...'' - addiu $sp, $sp, 8

; ==

; Subroutine module_start - Address 0x00000044
; Exported in syslib
module_start: ; Refs: 0x000000F0
 0x00000044: 0x03E00008 '....' - jr $ra
 0x00000048: 0x00001021 '!...' - move $v0, $zr
 0x0000004C: 0x03E00008 '....' - jr $ra
 0x00000050: 0x00001021 '!...' - move $v0, $zr

As shown, we can see that there are 2 subroutines, supervisor_B2C390CB and module_start, exported in the libraries

supervisor and syslib respectively. One may suspect that the supervisor_B2C390CB corresponds to our
sv_check_permissions function, and that ThredManForKernel_CEADEB47 to the sceKernelDelayThread.

1 It is worth mentioning the relation between this module section and the PSP_MODULE_INFO macro used in the source code. See
the PSPSDK initialization files for details.

 14

Finally, module_start is really simple: return to the return address returning zero (note the use of the constant value register $zr).
I must admit I don’t know why the jr and move instructions appear twice, though.

8.1.5 The method sv_check_permissions in detail

A closer look at the assembly can give us a better understanding of how it works:
addiu $sp, $sp, -8

Substract 8 (bytes) from the stack pointer, thus leaving room for 2 32-bit words in the stack. The stack "grows up", that is,
leaving room for local variables, local copies of registers and local copies of information such as the return address makes
the sp (stack pointer) register move up in memory (lower memory addresses).

sw $s0, 0($sp)
Store the contents of register s0 (temporary “all purpose register” that needs to be saved by the callee. In other words, the
caller expects this register not to change if a function is called. If the callee modifies the register, it needs to be left as it was
before returning to the caller.

move $s0, $a0

 Store the argument of the function (client Id) in register s0
sw $ra, 4($sp)

Store the contents of the return address in the stack (since we will be calling ThreadManForKernel_CEADEB47) the
contents of the register will change.

jal ThreadManForKernel_CEADEB47

li $a0, 10000

Call the method with one-slot delay jal, storing the numerical immediate value 10000 as first (and sole) argument of the
method, using argument register $a0.

li $v0, 123

 Store the numerical immediate value 123 in register v0
beq $s0, $v0, loc_00000030

Compare register $s0 (argument client id) with register $v0 (numerical 123) and "branch if equal" to location loc_00000030,
after having stored the value 276 (0x114) in v1. The 276 corresponds to the relative address of the "yes" string. Likewise,
280 corresponds to the relative address of the "no" string. So depending on the comparison we have addiu $v1, $v1, 276 or
lui $v0, 0x0 - addiu $v1, $v0, 280 thus storing in v1 the address of the string we want to return. Note that the compiler
has removed the 'p' local variable, optimized away by using of registers.

lw $ra, 4($sp)

 Get the original return address (from the stack, M[sp + 4]) and store it in the $ra register.
lw $s0, 0($sp)

 Leave the register s0 as it was when our method was called.
move $v0, $v1

 Move the result value (a pointer to the static string) in register v0, where the return value is stored.
jr $ra

addiu $sp, $sp, 8

One-slot delay jump to the address in register $ra (return address) after having left the stack as it was expected by the
caller.

Using the same tool, we can inspect the other PRX sections and realize a few things: that the sceKernelDelayThread
corresponds to the ThreadManForKernel_CEADEB47 identifier, and imported from an external, module.

; ==== Section .sceStub.text - Address 0x00000054 Size 0x00000008 Flags 0x0006

; ==
; Subroutine ThreadManForKernel_CEADEB47 - Address 0x00000054
; Imported from ThreadManForKernel
ThreadManForKernel_CEADEB47: ; Refs: 0x00000098 0x00000010
 0x00000054: 0x03E00008 '....' - jr $ra
 0x00000058: 0x00000000 '....' - nop

As detailed later, this is a Stub: a placeholder that will be changed when the module is loaded, once the address of the
ThreadManForKernel_CEADEB47 is resolved, the module will be linked and the now-empty jr $ra (which simply returns to the
caller address) will be changed by a jump to the function.

String literals used in the program (const char*) are stored in the .rodata section. Note that they are zero-ended and 32-bit aligned.
The “yes” is at relative address 0x0114 and the “no” is at 0x0118.

 15

; ==== Section .rodata - Address 0x00000114 Size 0x00000013 Flags 0x0032
 - 00 01 02 03 | 04 05 06 07 | 08 09 0A 0B | 0C 0D 0E 0F - 0123456789ABCDEF

0x00000114 - 79 65 73 00 | 6E 6F 00 00 | 73 75 70 65 | 72 76 69 73 - yes.no..supervis
0x00000124 - 6F 72 00 -- | -- -- -- -- | -- -- -- -- | -- -- -- -- - or..............

8.2 The Server Module
The server module services client requests, by exporting a method named server_process_req. When a client requests a
service, the server module checks whether the supervisor agrees or not. Usually, the server performs some tasks if the client has
been granted privileges. For the purposes of this tutorial, the module is kept simple. If a client is granted privileges, the function
returns 1 (true) or 0 (false) otherwise. A client will be granted privileges if its identifier is “123”.

The module is also a pure export PRX module in Kernel mode, so a lot of things discussed for the supervisor module apply. The
server module not only exports a method, server_process_req, but also imports the Server exported
sv_check_permissions. The prototype of the latter is given in the source code. More complex and real systems, the developer
who does not want to distribute source code will provide you with the PRX, the stub file .S and a header file with function prototypes
for inclusion and linking. In fact, this is what is being done by reverse engineering in a few kernel and user modules in PSP firmwares,
to alleviate developers of the boilerplate code and fastidious tasks of "hand" linking.

8.2.1 The server module source file

The C source for the server module is given below

#include <pspsdk.h>
#include <stdlib.h>
#include <string.h>
#include <pspkernel.h>

PSP_MODULE_INFO("PatchMod_Server", 0x1000, 1, 0);
PSP_NO_CREATE_MAIN_THREAD();

const char* sv_check_permissions (int client_id);

/**
 * Processes a client request
 *
 * @param client_id – client identifier. This is checked with the supervisor
 *
 * @returns 1 if request was processed successfully.
 */

int

server_process_req (int client_id)

{
 sceKernelDelayThread (10000);
 const char* super_string = sv_check_permissions (client_id);
 if (super_string[0] == 'y')
 return 1;
 else
 return 0;
}

int
module_start (SceSize argc, void* argp)
{
 return 0;
}

int
module_stop (SceSize args, void *argp)
{
 return 0;
}

 16

C code 8-4 source for the server module.

8.2.2 The server module import file
Lets see how automatic importing works. We saw how it is possible to generate a stub file when compiling a module that exports
symbols. This file (whose name usually ends in .S) is copied to an appropriate directory, compiled and linked to the module that
imports the symbols. The stub (also name import table) file is as follows (this format is known as the new format, which has
advantages with regard to existing practice):

 .set noreorder

#include "pspimport.s"

// Build files
// supervisor_0000.o supervisor_0001.o

#ifdef F_supervisor_0000
 IMPORT_START "supervisor",0x00090000
#endif
#ifdef F_supervisor_0001
 IMPORT_FUNC "supervisor",0xB2C390CB,sv_check_permissions
#endif

This assembly source file will, in fact, be compiled several times, each time with a given define (-D flag) allowing for ulterior
optimizations. A Makefile can be used to automate this.

8.2.3 The server module Makefile

release: all

PSPSDK = $(shell psp-config --pspsdk-path)

PSPLIBSDIR = $(PSPSDK)/..

TARGET = server
OBJS = server_main.o $(SUPERVISOR_OBJS)

CFLAGS = -O2 -G0 -Wall
ASFLAGS = $(CFLAGS)

LDFLAGS += -mno-crt0 -nostartfiles

USE_KERNEL_LIBS=1

BUILD_PRX=1

PRX_EXPORTS=server_exp.exp

SUPERVISOR_OBJS = supervisor_0000.o supervisor_0001.o

$(SUPERVISOR_OBJS): supervisor.S
 psp-gcc $(CFLAGS) -DF_$* $< -c -o $@

include $(PSPSDK)/lib/build.mak

8.3 The Client Application

8.3.1 File Structure
Create a Project directory and a corresponding supervisor and server subdirs, so the whole tutorial can be compiled. The Makefile for
the client module is as follows.

SUBDIRS = supervisor server
release:
 @for i in $(SUBDIRS); do echo "make all in $$i..."; (cd $$i; $(MAKE) all; cp $$i.prx ..);
done
 make all

 17

allclean:
 make clean
 @for i in $(SUBDIRS); do echo "Clearing in $$i..."; (cd $$i; $(MAKE) clean; rm -rf
$$i.prx); done

PSPSDK = $(shell psp-config --pspsdk-path)

PSPLIBSDIR = $(PSPSDK)/..

TARGET = client
OBJS = main.o
CFLAGS = -O2 -G0 -Wall
ASFLAGS = $(CFLAGS)

EXTRA_TARGETS = EBOOT.PBP
PSP_EBOOT_TITLE = ModPatch Client

include $(PSPSDK)/lib/build.mak

install:
 mkdir -p /media/disk/psp/game150/modpatch
 cp EBOOT.PBP server.prx supervisor.prx /media/disk/psp/game150/modpatch
 sync

8.3.2 Boilerplate code
Other than the boilerplate code that you already know, when developing homebrew applications, it is often required to call a few
kernel mode functions that ease the pain. The original PSP system has several limitations regarding modules such as which device
the modules can be loaded from, whether they are signed or encrypted and other similar restrictions (such as loading a module in
kernel memory partition from a user module, etc.). Later, we will see some of the techniques used for such purposes, but for the time
being, just consider that (in kernel mode) you need to add the following lines (usually put in main or module_start if in kernel
mode, or in the application “constructor”, see PspSDK doc, if the application is in user mode).

 pspSdkInstallNoDeviceCheckPatch();

 pspSdkInstallNoPlainModuleCheckPatch();

 pspSdkInstallKernelLoadModulePatch();

8.3.3 Preprocessor directives and macros
A few macros are defined to simplify the dynamic construction of MIPS instructions:

typedef int (*METHOD) (int client_id);

// null the 6 MSB bits (the opcode bits)
// and divide x by 4 to get the J-Instr parameter.
#define MIPS_J_ADDRESS(x) (((u32)((x)) & 0x3FFFFFFF) >> 2)

#define NOP (0x00000000)
#define JAL_TO(x) (0x0E000000 | MIPS_J_ADDRESS(x))
#define J_TO(x) (0x08000000 | MIPS_J_ADDRESS(x))
#define LUI(x,y) (0x3C000000 | ((x & 0x1F) << 0x10) | (y & 0xFFFF))

#define PSPDEBUG

#define printf pspDebugScreenPrintf
#if defined(PSPDEBUG)
#define dbg_log pspDebugScreenPrintf
#else
#define dbg_log(...)
#endif

8.3.4 Typedefs
For clarity purposes, we use the following typedefs:
- PspNID is used to store a PSP NID, an unsigned 32 bit word
- MIPSInstruction is used to store a MIPS Instruction

 18

- MemAddress is a 32-bit aligned memory address. Dereferencing a pointer gives you the 32 bit word found at that address. As
per std. C pointer arithmetic, incrementing a MemAddress increases the absolute numeric address in 4.

typedef u32 PspNID;
typedef u32* MemAddress; // a 32-bit aligned memory address (4-byte aligned arithmetic
0x0000 -> 0x0004)
typedef u32 MIPSInstruction;

For example, the following function can be used to dump the memory region corresponding to the text section to the screen:

/**
 * Dumps a memory region given by start and end on debug console
 *
 * @param start – starting memory address (32 bit aligned, u32*)
 * @param end – ending memory address (32 bit aligned, u32*)
 *
 */

static void
pspDumpMemRegion (MemAddress start, MemAddress end)
{
 MemAddress a = start;
 MIPSInstruction I;
 while (a <= end) {
 I = (MIPSInstruction) (*a);
 printf("Instr: 0x%08X: 0x%08X\n", (u32)a, (u32)I);
 a++;
 }

}

C code 8-5 pspDumpMemRegion

8.3.5 Capturing the “Press Home to quit”
As you may have seen in the SDK samples, it is common practice to add some code at startup so your program or application,
despite of what it is doing at a given moment, can be cancelled by pressing “home”. For this, a possible approach is that your thread
would continually read or peek the control status for the “home” key. This solution, which can only be done in kernel mode, anyway,
may not be convenient. A safer, cleaner approach required if, for example, your thread is sleeping or actively doing anything, is the
following: the kernel allows you to create and register a callback automatically called at exit. For this, you create a user mode worker
thread for this purpose: the thread procedure simply creates and registers a callback for exiting the application and goes to sleeps (but
waiting for callbacks, sceKernelSleepThreadCB). When the user presses home, the kernel pops a dialog asking for
confirmation, and if the user replies “yes”, your callback method of the worker thread is called, allowing you to quit your application by
calling sceKernelExitGame. The drawback is that you have created a thread just for this. In most cases, just add some code as

shown below, and call AppSetupExitCallback at the beginning.

/**
 * Called by Kernel when user quits the application.
 *
 *
 * @returns 0
 */
static int
_app_exit_callback(int arg1, int arg2, void *common)
{
 sceKernelExitGame();
 return 0;
}

static int
_app_ExitCallbackThreadProc (SceSize args, void *argp)
{
 int cbid = sceKernelCreateCallback("Exit Callback", _app_exit_callback, NULL);
 sceKernelRegisterExitCallback(cbid);
 sceKernelSleepThreadCB();
 return 0;

 19

}

static int
AppSetupExitCallback (void)
{
 int thid = sceKernelCreateThread("exit_callback_thread",
 _app_ExitCallbackThreadProc, 0x11, 0xFA0, THREAD_ATTR_USER, 0);
 if (thid >= 0)
 {
 sceKernelStartThread(thid, 0, 0);
 }
 return thid;

}

C code 8-6 boilerplate code to setup a thread that manages the exit callback

8.3.6 Loading the modules
After doing some initialization (including preparing the screen and setting up the exit callback), the application loads and starts both
PRX modules, using the pspModuleLoadStartInKernelPart:

int
main (int argc, char* argv[])

{

 (void)argc;
 (void)argv;
 pspDebugScreenInit();
 pspSdkInstallNoDeviceCheckPatch();
 pspSdkInstallNoPlainModuleCheckPatch();
 pspSdkInstallKernelLoadModulePatch();
 AppSetupExitCallback();

 SceModule* modsuper = pspModuleLoadStartInKernelPart ("supervisor.prx");
 SceModule* modserver = pspModuleLoadStartInKernelPart ("server.prx");

The method pspModuleLoadStartInKernelPart is very similar to those present in the SDK, and basically loads the module
in a Kernel memory partition2

/**
 * Loads and Starts module in Kernel memory partition
 *
 * @param modpath - path to the module to load (cfr. sceKernelLoadModule)
 *
 * @return (SceModule*) address.
 * @returns the address of the module struct for the loaded module
 * or NULL if either sceKernelLoadModule or sceKernelStartModule
 * failed.
 */

static SceModule*
pspModuleLoadStartInKernelPart (const char* modpath)
{
 SceKernelLMOption option = {
 .size = sizeof(option),
 .mpidtext = (SceUID) 1, // SceUID mpid = 1 kernel partition
 .mpiddata = (SceUID) 1,
 .position = 0,
 .access = 1
 };

2 Let us note that with custom firmwares it may be possible to load modules in a kernel partition from a user thread. This is a means to
overcome some limitations e.g. in the 3.X OE firmwares, since they require a user mode PRX or static ELF to be in the application
EBOOT.PBP. If your application needs to be in kernel mode, use bootstrapping: use a user mode thread that loads a module in kernel
memory and starts it. The loaded module will be in kernel mode (provided it has been compiled as such).

 20

 SceUID modid = sceKernelLoadModule(modpath, 0, &option);
 if (modid < 0) {
 dbg_log ("sceKernelLoadModule('%s') "
 "failed with %x\n", modpath, modid);
 return NULL;
 }

 int status = 0;
 int res = sceKernelStartModule(modid, 0, NULL, &status, NULL);
 (void)status;
 if (res < 0) {
 dbg_log ("sceKernelStartModule('%s') "
 "failed with %x\n", modpath, res);
 sceKernelUnloadModule(modid);
 return NULL;
 }
 return sceKernelFindModuleByUID(modid);
}

C code 8-7 pspModuleLoadStartInKernelPart

8.3.7 Managing modules
The kernel maintains a list of loaded modules and their related information. Most operations requiring access to the involved structs
require kernel mode, since user mode applications are limited to a few module tasks. For example, the following snippet outputs the
module name if the module name does not start with sce (a dirty hack to detect homebrew modules).

/**
 * Outputs the name of the module on DBG console.
 *
 * @param mod - module.
 *
 * @return (void)
 */

static void
print_module (SceModule* mod)
{
 if (!mod)
 return;

 if (strncmp (mod->modname,"sce", 3) != 0) {
 dbg_log ("mod: %s\n", mod->modname);
 }
}

C code 8-8 print_module function

In order to get a list of the loaded modules (each one represented by a SceModule*), you can use the
sceKernelGetModuleIdList fuction, which basically fills a passed array of SceUIDs with the uids of the loaded modules.
You may then use the function sceKernelFindModuleByUID to map that module uid to the corresponding SceModule. For
convenience reasons, it is good to have a function that iterates the list of loaded modules, applying a given function as argument to
each loaded module:

/**
 * Foreach iteration for the list of Loaded Modules
 *
 * @param func function pointer to callback for each element
 *
 * @return (void)
 */

static void
pspForeachLoadedModule (void (*func) (SceModule*))
{
 SceUID ids[512];
 memset (ids, 0, 512 * sizeof(SceUID));

 21

 int count = 0;
 sceKernelGetModuleIdList(ids, 512 * sizeof(SceUID), &count);

 int p;
 for (p = 0; p < count; p++)
 {
 SceModule* mod = sceKernelFindModuleByUID(ids[p]);
 if (mod)
 (*func)(mod);
 }
}

// you can also use
int sceKernelModuleCount(void);

C code 8-9 pspForeachLoadedModule.

8.3.8 Kernel internal management of loaded modules

For each loaded module, the kernel creates a SceModule struct in memory, containing information about the module such as its
name, module attributes, module libraries and function exports and module imports, and adds it to a single linked list. The
SceModule ent_top points to a memory region of size ent_size bytes where Library Entries are kept. Each library entry
(represented as a SceLibraryEntry struct) manages a set of exported symbols for that library: the library name, the version and
attributes and the number of exported functions and exported variables. The len (in 32-bit words) determines the total size of the
SceLibraryEntry (other struct members may be added in the future, it is not safe to assume that the objects in memory are of fixed
size, use the len to iterate each library). The entry_table points to a memory array where the mapping of NIDs and the
corresponding functions is kept: an array of NIDs (for both the functions and variables) followed by the memory addresses of the
exported functions and variables (e.g. the green box in Figure below shows the NID for the 2nd exported function of the first library and
the address of the function code).
Likewise, the set of imported function stubs for the module is pointed at by the stub_top pointer, pointing to a memory region of
stub_size bytes. This memory region contains a variable-length stub table for each imported library. Each Imported library is
represented by a stub table (variable-sized struct) SceLibraryStubTable. The member nidtable points to a NID table
(contiguous memory array) with the library imported NIDs. For each imported NID, a two-instruction stub is a placeholder that will be
resolved when the module is linked (an empty stub just jumps at the return address register). As shown in the figure, address
0x08834D08 is the address of the stub for imported NID 2 of the first imported library.

 22

stub_top

stub_size

32 bits

N
id

 c
o
u
n
t

c
vs

c

nid1

nid2

nid3

…

vnid1

lib1

lib2
…en

t_
si

ze
 (

b
y
te

s)

libname

vers | attr

len|vsc| sc

nid1

nid2

nid3

…

ent_top

ent_size

EXPORTs

IMPORTs

SceModuleSceModule

libname

libname

st
u
b
_
si

ze

stubtable1
nidtable

JR $ra /SYSCALL

NOP

…

stubtable

NOP

e.g. 0x08834D00

e.g. 0x08834D08

stubtable2

version | attr

len|vsc| sc

entrytable

vnid2

´l´ ´i´´b´ ´1´ ´\0´

c
vs

c

nid1

nid2

nid3

…

vnid1

vnid2

next

modname

modid

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

stub_top

stub_size

32 bits

ent_top

ent_size

SceModuleSceModule

next

modname

modid
entrytable

addiu $sp,$sp,-8

sw $s0, 0($sp)

sw $ra, 4($sp)

SceLibraryEntryTableSceLibraryEntryTable

JR $ra /SYSCALL

li $a0, 5

…

jal foo

jr $ra

Le
n
 (

in
 w

o
rd

s)

addiu $sp, $sp, 8

SceLibraryStubTableSceLibraryStubTable

vstubtable

ModulesModules

Once the memory layout is known, a kernel mode application may iterate the list of loaded modules, find a given exported function of
a module library and get the memory address of the exported function once loaded in memory. Similarly, the application may
dynamically during run-time, change the address associated to a given library NID. A possible implementation is as follows:

/**

 * Find the address of a Module Export function

 *
 * @param mod - SceModule that exports the function
 * @param lib - Lirary name
 * @param nid - NID to look for.
 *
 * @return addr of the stub e.g. 0xDEADBEEF
 * 0xDEADBEEF: JAL or J $ra...)
 * 0xDEADBEF3: NOP
 */

static MemAddress
pspModuleFindExportedNidAddr (SceModule* mod, const char* lib, u32 nid)
{
 return _pspModuleExportHelper (mod, lib, nid, (u32)NULL);
}

/**
 * Change the address of a Module Export function
 *
 * @param mod - SceModule that exports the function
 * @param lib - Lirary name
 * @param nid - NID to look for.
 * @param newProcAddr - new address bound to that nid (match prototype)
 *
 * @return old Proc Addr
 */

 23

static MemAddress
pspModuleSetExportedNidToAddr (SceModule* mod, const char* lib, u32 nid, MemAddress
newProcAddr)
{
 return _pspModuleExportHelper (mod, lib, nid, newProcAddr);

}

C code 8-10 pspModuleSetExportedNidToAddr and pspModuleFindExportedNidAddr.

Both functions do basically the same task, so we can have a single function doing the work:

/**
 * Internal Helper function to retrieve / store the Proc Address
 * of a given NID of a Module Exported Library
 *
 * @param mod - SceModule that exports the function
 * @param lib - Lirary name
 * @param nid - NID to look for.
 * @param newProcAddr - new address to store. If NULL(0) just retrieve the existing one
 *
 * @return addr associated to the NID (old address if changed)
 */

static MemAddress
_pspModuleExportHelper (SceModule* mod, const char* lib, PspNID nid, MemAddress
newProcAddr)
{
 assert (mod);

 MemAddress ent_next = (MemAddress) mod->ent_top;
 MemAddress ent_end = (MemAddress) mod->ent_top + (mod->ent_size >> 2);

// size is in bytes

 while (ent_next < ent_end)
 {
 SceLibraryEntryTable* ent = (SceLibraryEntryTable*)ent_next;

 if (ent->libname && strcmp(ent->libname, lib) == 0)
 {
 int count = ent->stubcount + ent->vstubcount;
 PspNID* nidtable = (PspNID*)ent->entrytable;
 int i;
 for (i = 0; i < count; i++)
 {
 if (nidtable[i] == nid)
 {
 MemAddress procAddr =(MemAddress)nidtable[count+i];
 if (newProcAddr) {
 nidtable[count+i] = (u32)newProcAddr;
 }
 return procAddr;
 }
 }
 return (MemAddress)0;
 }
 ent_next += ent->len; // len in 32-bit words.
 }
 return (MemAddress)0;
}

Knowing this, an application in kernel mode that wishes to execute a module exported function once the module is loaded can look for
the address using the above functions and call the method. This is what our client application does: executes the server function as
follows:

typedef int (*METHOD) (int client_id);

 24

/**
 * Performs a request to a server. Server module (server.prx) must be loaded.
 * The service is mapped to NID 0xAB55332D and takes a client id as argument
 * and returns an integer.
 *
 * @param modserver – module that exports the NID
 */

static void
AppClientDoRequest (SceModule* modserver)
{
 int client_id = 666;
 METHOD server_f = (METHOD)pspModuleFindExportedNidAddr (modserver,
 "server", 0xAB55332D);
 int result = (*server_f)(client_id);

 const char* msg;
 if (result == 1)
 msg = "good";
 else if (result == 0)
 msg = "bad";
 else
 msg = "server misbehaving";

 printf ("Client request: %s\n",msg);

}

As expected, if we run this code, the client gets a result of 0 and outputs “bad”

9 “Patching” modules
By design, a client will not be granted privileges by the supervisor, unless its identifier is 123. Assume, for any reason, that the client
module coder wants to access to the server service, and unfortunately:

• It is not possible to change the identifier.
• We have no access to the server and supervisor modules source code.
• We cannot modify the supervisor and server modules PRX files.

A possible approach in this case (done, for example, in the SDK in a few places and by custom firmwares) is to modify the modules
once in memory, so they behave as we want them to. This is not always possible (for example, an operating system may mark some
memory regions “read-only”). In the following, we will look into the details on how the kernel manages the modules, and how we can
modify the behavior of the system dynamically. This is commonly known as “patching”. For this, all presented methods are mainly
based on accessing memory addresses and changing pointer values or modify/construct MIPS instructions.

 25

stub_top

stub_size

32 bits

N
id

 c
o
u
n
t

c
vs

c

nid1

nid2

nid3

…

vnid1

lib1

lib2
…en

t_
si

ze
 (

b
y
te

s)

libname

vers | attr

len|vsc| sc

nid1

nid2

nid3

…

ent_top

ent_size

EXPORTs

IMPORTs

SceModuleSceModule

libname

libname

st
u
b
_
si

ze

stubtable1
nidtable

JR $ra /SYSCALL

NOP

…

stubtable

NOP

e.g. 0x08834D00

e.g. 0x08834D08

stubtable2

version | attr

len|vsc| sc

entrytable

vnid2

´l´ ´i´´b´ ´1´ ´\0´

c
vs

c

nid1

nid2

nid3

…

vnid1

vnid2

next

modname

modid

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

stub_top

stub_size

32 bits

ent_top

ent_size

SceModuleSceModule

next

modname

modid
entrytable

addiu $sp,$sp,-8

sw $s0, 0($sp)

sw $ra, 4($sp)

SceLibraryEntryTableSceLibraryEntryTable

JR $ra /SYSCALL

li $a0, 5

…

jal foo

jr $ra

Le
n
 (

in
 w

o
rd

s)

addiu $sp, $sp, 8

SceLibraryStubTableSceLibraryStubTable

vstubtable

ModulesModules

10 Patching the Server Module Export Table
A first approach consists in patching the server export table, once it has been loaded in memory. We have just detailed how the kernel
maps NIDs to function addresses. The main idea is that we can change the values in memory, so a given library NID is resolved to an
address of a function that fully replaces the exported function.

 26

stub_top

stub_size

32 bits

N
id

 c
o
u
n
t

c
v
sc

nid1

nid2

nid3

…

vnid1

lib1

lib2
…en

t_
si

ze
 (

b
yt

es
)

libname

vers | attr

len|vsc| sc

nid1

nid2

nid3

…

ent_top

ent_size

EXPORTs

IMPORTs

SceModuleSceModule

libname

libname

st
u
b
_
si

ze

stubtable1
nidtable

JR $ra /SYSCALL

NOP

…

stubtable

NOP

e.g. 0x08834D00

e.g. 0x08834D08

stubtable2

version | attr

len|vsc| sc

entrytable

vnid2

´l´ ´i´´b´ ´1´ ´\0´

c
vs

c

nid1

nid2

nid3

…

vnid1

vnid2

next

modname

modid

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

stub_top

stub_size

32 bits

ent_top

ent_size

SceModuleSceModule

next

modname

modid
entrytable

addiu $sp,$sp,-8

sw $s0, 0($sp)

sw $ra, 4($sp)

SceLibraryEntryTableSceLibraryEntryTable

JR $ra /SYSCALL

li $a0, 5

…

jal foo

jr $ra

Le
n
 (

in
 w

o
rd

s)

addiu $sp, $sp, 8

SceLibraryStubTableSceLibraryStubTable

vstubtable

Module Exported Libraries andModule Exported Libraries and
““patching an exported NIDpatching an exported NID””

addiu $sp,$sp,-8

sw $s0, 0($sp)

sw $ra, 4($sp)

li $a0, 5

…

jal bar

jr $ra

addiu $sp, $sp, 8

Our server_process_req replacement is simple:

int
server_process_req_patched (int id)
{
 sceKernelDelayThread (10000);
 return 100;

}

The client just needs to do the following:

// Store the addresses of original procs.
 METHOD sv_chech_permissions_orig = (METHOD)pspModuleFindExportedNidAddr (modsuper,
"supervisor", 0xB2C390CB);
 METHOD server_process_req_orig = (METHOD)pspModuleFindExportedNidAddr (modserver,
"server", 0xAB55332D);

 printf ("Orig Super Process Method: %p\n", (void*)sv_chech_permissions_orig);
 printf ("Orig Server Process Method: %p\n", (void*)server_process_req_orig);
 (void)sv_chech_permissions_orig; // In case we need to use it in our patched file

 // Use Server module as supposed to.
 AppClientDoRequest (modserver);

 // Trivially,change the whole procedure
 pspModuleSetExportedNidToAddr (modserver, "server", 0xAB55332D,
(MemAddress)server_process_req_patched);

 AppClientDoRequest (modserver);

Note that the same process could be applied to the supervisor module, so the supervisor
exported function sv_check_permissions could be replaced completely. As a side effect, all
calls from loaded modules to this exported function would call our patched version. To make
things more interesting, we will add another constraint: we want the supervisor module to

 27

grant us access only when called from the server module, and we want the default behavior
in other cases. Let’s see how this can be done.

11 Patching the Server “server_process_req” exported method.
The previous solution, although interesting, is not appropriate for our purposes, because we need to replace the whole
“server_process_req” function and we need to duplicate the functionality that the server performs. This may not be easy.
Once we have resolved the address of the exported function given a module, a library and a NID, we can change specific instructions
so they behave as we want. In the case shown in the figure above, once we know the address of the function, by inspecting the PRX
dump of the server module, we can find the offset to the JAL instruction where the call to sv_check_permissions exported
function (in the Figure we could find the address of the jal foo call and change it to jal bar. (if you look at the figure, it would
be like changing the jal foo instruction inside the green box, not making the library point to the red box.

 MemAddress baseaddr;
 MemAddress calladdr; // absolute addressing.
 MIPSInstruction newinstr;

 // Using the base address of the server_process_req and the
 // offset to the "jla supervisor_0xB2C390CB", compute the
 // memory address to be patched / changed.
 baseaddr = (MemAddress) server_process_req_orig;
 calladdr = baseaddr + (0x18 >> 2);
 newinstr = JAL_TO(sv_check_permissions_patched);

 printf("Patch address: 0x%08X with op: 0x%08X\n", (u32)calladdr, (u32)newinstr);
 // dump before
 printf ("before patch\n");
 pspDumpMemRegion (calladdr - 2, calladdr + 1);

 // patch
 int intc = pspSdkDisableInterrupts();
 _sw(newinstr, (u32)calladdr);

 sceKernelDcacheWritebackAll();
 sceKernelIcacheInvalidateAll();
 pspSdkEnableInterrupts(intc);

 // dump after
 printf ("after patch\n");
 pspDumpMemRegion (calladdr - 2, calladdr + 1);

12 Patching the Server Module Import (stub) Table
Finally, patching individual instructions inside the server_process_req may not be appropriate: the supervisor
sv_check_permissions method may be called several places inside or outside the server_process_req. In some cases
it may be enough, when we want to change the behavior locally, in some cases only.
When it is not easy to find all the cases where the server module calls the supervisor exported functions, another approach is to patch
the stub import table: we know that the kernel, given a loaded module, and for each imported library, the kernel manages a table with
addresses to the “stubs”, placeholders where usually a direct jump to the imported function is stored (or a syscall).

Applying the same reasoning as we did before, we can find the address of the two-instruction offset of an imported function for a given
module. A possible implementation is as follows:

/**
 * Find the address of a Module Import stub given the NID
 *
 * @param mod - SceModule that imports the NID
 * @param nid - NID to look for.
 *

 * @return addr of the stub e.g. 0xDEADBEEF

 * 0xDEADBEEF: J $ra
 * 0xDEADBEF3: NOP
 */
static MemAddress
pspModuleFindImportStubAddrByNid (SceModule* mod, PspNID nid)
{
 assert(mod);
 MemAddress stub_next = (MemAddress) mod->stub_top;

 28

 MemAddress stub_end = (MemAddress) mod->stub_top + (mod->stub_size >> 2);

 while (stub_next < stub_end)
 {
 SceLibraryStubTable* stub = (SceLibraryStubTable*) stub_next;
 u32* table = stub->stubtable;
 int n = stub->stubcount;
 int j;
 for (j = 0; j < n; j++)
 {
 if (stub->nidtable[j] == nid)
 {
 dbg_log ("%-3d: UID 0x%08X, Addr 0x%08X\n",
 j+1, stub->nidtable[j], (u32)& table[j << 1]);
 return ((MemAddress) &(table[j << 1]));
 }
 }
 stub_next += stub->len; // len in 32-bit words.
 }
 return (MemAddress)0;

}

Graphically, the patch process is shown in the Figure below: we replace the stub entry for imported NID supervisor_B2C390CB with a
direct call to our patched modified version. For this, we just construct dynamically a direct J instruction to our address and put a NOP
for the delay instruction. As long as our patched method has the same arguments and return address, and considering what we
discussed about the differences between J and JAL, once our method executed, we will jump to the right return address.

 MemAddress baseaddr;
 MemAddress calladdr; // absolute addressing.
 MIPSInstruction newinstr;

 MemAddress sv_stub_JR_addr = pspModuleFindImportStubAddrByNid (modserver,);
 baseaddr = sv_stub_JR_addr;
 calladdr = baseaddr;
 newinstr = J_TO(sv_check_permissions_patched);

 printf("Patch address: 0x%08X with op: 0x%08X\n", (u32)calladdr, (u32)newinstr);
 // dump before
 printf ("before patch\n");
 pspDumpMemRegion (calladdr - 2, calladdr + 1);

 // patch
 int intc = pspSdkDisableInterrupts();
 _sw(newinstr, (u32)calladdr);
 _sw(NOP, (u32) (calladdr + 0x01));

 sceKernelDcacheWritebackAll();
 sceKernelIcacheInvalidateAll();
 pspSdkEnableInterrupts(intc);

 // dump after
 printf ("after patch\n");

 pspDumpMemRegion (calladdr - 2, calladdr + 1);

 29

stub_top

stub_size

32 bits

N
id

 c
o
u
n
t

c
vs

c

nid1

nid2

nid3

…

vnid1

lib1

lib2
…en

t_
si

ze
 (

b
yt

es
)

libname

vers | attr

len|vsc| sc

nid1

nid2

nid3

…

ent_top

ent_size

EXPORTs

IMPORTs

SceModuleSceModule

libname

libname

st
u
b
_
si

ze

stubtable1
nidtable

J bar

NOP

…

stubtable

NOP

stubtable2

version | attr

len|vsc| sc

entrytable

vnid2

´l´ ´i´´b´ ´1´ ´\0´

c
vs

c

nid1

nid2

nid3

…

vnid1

vnid2

next

modname

modid

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

c
vs

c

@for_nid1

@for_nid2

@for_nid3

…

@for_vnid1

@for_vnid2

stub_top

stub_size

32 bits

ent_top

ent_size

SceModuleSceModule

next

modname

modid
entrytable

addiu $sp,$sp,-8

sw $s0, 0($sp)

sw $ra, 4($sp)

SceLibraryEntryTableSceLibraryEntryTable

JR $ra /SYSCALL

li $a0, 5

…

jal foo

jr $ra

Le
n
 (

in
 w

o
rd

s)

addiu $sp, $sp, 8

SceLibraryStubTableSceLibraryStubTable

vstubtable

Module Exported Libraries andModule Exported Libraries and
““patching an Import Stubpatching an Import Stub””

addiu $sp,$sp,-4

sw $ra, 4($sp)

…

jr $ra

addiu $sp, $sp, 4

32 bits

#define PATCH_PROC 0
#define PATCH_IMPORTED_NID 1

int
main(void)
{
 //const int choice = PATCH_PROC;
 const int choice = PATCH_IMPORTED_NID;

 pspDebugScreenInit();
 pspSdkInstallNoDeviceCheckPatch();
 pspSdkInstallNoPlainModuleCheckPatch();
 pspSdkInstallKernelLoadModulePatch();
 AppSetupExitCallback();

 SceModule* modsuper = pspModuleLoadStartInKernelPart ("supervisor.prx");
 SceModule* modserver = pspModuleLoadStartInKernelPart ("server.prx");

 pspForeachLoadedModule (print_module);

 // Store the addresses of orignal procs.
 METHOD sv_chech_permissions_orig = (METHOD)pspModuleFindExportedNidAddr (modsuper,
"supervisor", 0xB2C390CB);
 METHOD server_process_req_orig = (METHOD)pspModuleFindExportedNidAddr (modserver,
"server", 0xAB55332D);

 printf ("Orig Super Process Method: %p\n", (void*)sv_chech_permissions_orig);
 printf ("Orig Server Process Method: %p\n", (void*)server_process_req_orig);
 (void)sv_chech_permissions_orig; // In case we need to use it in our patched file

 // Use Server module as supposed to.

 AppClientDoRequest (modserver);

 // Trivially,change the whole procedure
 pspModuleSetExportedNidToAddr (modserver, "server", 0xAB55332D,
(MemAddress)server_process_req_patched);
 AppClientDoRequest (modserver);

 30

 // Set as it was
 pspModuleSetExportedNidToAddr (modserver, "server", 0xAB55332D,
(MemAddress)server_process_req_orig);
 AppClientDoRequest (modserver);

 MemAddress baseaddr;
 MemAddress calladdr; // absolute addressing.
 MIPSInstruction newinstr;

 if (choice == PATCH_PROC)
 {
 // Using the base address of the server_process_req and the
 // offset to the "jla supervisor_0xB2C390CB", compute the
 // memory address to be patched / changed.
 baseaddr = (MemAddress) server_process_req_orig;
 calladdr = baseaddr + (0x18 >> 2);
 newinstr = JAL_TO(sv_check_permissions_patched);
 }
 else if (choice == PATCH_IMPORTED_NID)
 {
 MemAddress sv_stub_JR_addr = pspModuleFindImportStubAddrByNid (modserver,
0xB2C390CB);
 baseaddr = sv_stub_JR_addr;
 calladdr = baseaddr;
 newinstr = J_TO(sv_check_permissions_patched);
 }

 printf("Patch address: 0x%08X with op: 0x%08X\n", (u32)calladdr, (u32)newinstr);
 // dump before
 printf ("before patch\n");
 pspDumpMemRegion (calladdr - 2, calladdr + 1);

 // patch
 int intc = pspSdkDisableInterrupts();
 _sw(newinstr, (u32)calladdr);
 if (choice == PATCH_IMPORTED_NID) {
 // newinstr = LUI(0x00, 0x00);
 // newinstr = NOP;
 _sw(NOP, (u32) (calladdr + 0x01));
 }
 sceKernelDcacheWritebackAll();
 sceKernelIcacheInvalidateAll();
 pspSdkEnableInterrupts(intc);

 // dump after
 printf ("after patch\n");
 pspDumpMemRegion (calladdr - 2, calladdr + 1);

 AppClientDoRequest (modserver);
 printf("Done\n");
 sceKernelExitDeleteThread(0);
 return 0;
}

13 Conclusions
We have explained how PSP modules can be created, loaded, and patched. Similar approaches are being done in the SDK and in
custom firmwares: for example, the kernel module responsible of loading and starting modules may check the device from which a
given module is loaded, and deny the loading of modules from the memory stick (the supervisor checks the policy “not loaded from
MS” and the server, representing the “load module” service, denies the request). By patching the address or function call where this is
checked, we can replace the check by a “true” regardless of the device.
Similarly, it would be possible to hide applications from the XMB as it is done in custom firmwares to hide the “corrupt icons”: the
directory open and directory read function addresses used to read the entries of directories can be found, and wrapper functions used,
in such a way that the original function is not called in some cases, or called twice.

